AFFILIATED INSTITUTIONS ANNA UNIVERSITY, CHENNAI REGULATIONS - 2009 CURRICULUM M.TECH. MAIN FRAME TECHNOLOGY

SEMESTER – I

COURSE CODE NO	COURSE TITLE	L	т	Ρ	С	
THEORY						
MA 9327	Optimization Techniques	3	1	0	4	
MT 9311	Fundamentals of Mainframe Technology	3	0	0	3	
MT 9312	Data Structures and Algorithms	3	0	0	3	
MT 9313	Computer Communication Networks	3	0	0	3	
MT 9314	COBOL Programming	3	1	0	4	
MT 9315	Advanced Database Technology	3	1	0	4	
PRACTICALS						
MT 9316	Data Structures Lab	0	0	3	2	

OPTIMIZATION TECHNIQUES

LTPC 3104

(12)

(12)

UNIT I LINEAR PROGRAMMING

Linear Programming: Graphical method, Simplex method, Revised simplex method, Duality in Linear Programming (LP), Sensitivity analysis, other algorithms for solving problems, Transportation, assignment and other applications.

UNIT II NON LINEAR PROGRAMMING

Non Linear Programming: Unconstrained optimization techniques, Direct search methods, Descent methods, constrained optimization.

UNIT III **INTEGER PROGRAMMING**

Formulation of Integer Programming problems, Gomory's cutting plane methods, Branch and Bound Techniques.

UNIT IV DYNAMIC PROGRAMMING

Characteristics of Dynamic Programming, Bellman's principle of optimality, Concepts of dynamic programming, tabular method of solution, Calculus method of solution.

UNIT V PERT/CPM

Network Construction-computation of earliest start time, latest start time, Total, free and independent float time-Crashing-Computation of optimistic, most likely Pessimistic and expected time-Resource analysis in Network scheduling.

L = 45 T = 15 Total = 60

REFERENCES:

- 1. Taha, H.A., "Operations Research: An Introduction", Pearson Education, New Delhi, 2002.
- 2. S.S. Rao, "Engineering Optimization: Theory and practice", New Age International, New Delhi, 2000.
- 3. Trivedi K.S., "Probability and Statistics with Reliability, Queuing and Computer Applications", Prentice Hall, New Delhi, 2003.

MT 9311 FUNDAMENTALS OF MAINFRAME TECHNOLOGY LTPC 3 0 0 3

UNIT I NEW MAINFRAME

Mainframe concepts-an evolving architecture- mainframe computer users- factors contributing to mainframe use - mainframe workloads.

(9)

(12)

(12)

(12)

UNIT II CAPACITY

Capacity – elements of a system required for capacity – few server Vs Many server – service level agreement – managing the system to the SLA – architecture, running work and capacity – several servers on one physical machine – parallel sysplex and its measurements.

UNIT III SCALABILITY, INTEGRITY AND SECURITY

Introduction to scalability – scalability concepts – scalability implementation on IBM system – integrity – security – introduction to availability – Inhibitors to availability - redundancy – z/OS elements for availability – Disaster recovery.

UNIT IV ACCESSING LARGE AMOUNT OF DATA

Introduction – channel subsystem – control unit- DASD CKD architecture and DASD subsystem – multiple allegiance/Parallel Access volumes – database and data sharing – Data placement and management.

UNIT V SYSTEM MANAGEMENT AND AUTONOMIC COMPUTING (9) Introduction – system data – configuration management – operating management – performance management – problem management – introduction to autonomic computing – self healing – self protecting – self optimizing.

L – 45 Total – 45

REFERENCES:

- 1. Mike Ebbers, Frank Byrne, Pilar Gonzalez Adrados, Rodney Martin and Jon Veilleux "Redbook – Introduction to Mainframe - Large Scale Commercial Computing". First Edition December 2006, IBM Corp.
- 2. Lydia Parziale, Edi Lopes Alves, Klaus Egeler, Clive Jordan" Introduction to the New Mainframe: z/VM Basics", November 26, 2007, IBM Redbooks.

MT 9312	DATA STRUCTURES AND ALGORITHMS	LTPC
		3003

UNIT I INTRODUCTION

Basic concepts of OOPs – Templates – Fundamentals of Analysis of Algorithm Efficiency – ADT - List (Singly, Doubly and Circular) Implementation - Array, Pointer

UNIT II BASIC DATA STRUCTURES

Stacks and Queues – ADT, Implementation and Applications - Trees – General, Binary, Binary Search, Expression Search, AVL, Splay, B-Trees – Implementations - Tree Traversals

(9)

(9)

(8)

(9)

UNIT III **ADVANCED DATA STRUCTURES**

Set – Implementation – Basic operations on set – Priority Queue – Implementation -Graphs – Directed Graphs – Shortest Path Problem - Undirected Graph - Spanning Trees – Graph Traversals

UNIT IV SEARCHING AND SORTING

Searching Techniques, Sorting – Internal Sorting – Bubble Sort, Insertion Sort, Quick Sort, Heap Sort, Bin Sort, Radix Sort – External Sorting – Merge Sort, Multi-way Merge Sort, Polyphase Sorting

UNIT V ALGORITHM DESIGN TECHNIQUES

Design Techniques - Divide and Conquer - Dynamic Programming - Greedy Algorithm -Backtracking - Local Search Algorithms

> L – 45 Total – 45

REFERENCES:

- 1. Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Pearson Education. 2002.
- 2. A. Levitin, "Introduction to The Design and Analysis of Algorithms", 2nd edition, Addison Wesley, 2007 (chapter 2)
- 3. Horowitz, Sahni, Rajasekaran, "Computer Algorithms", Galgotia, 2000
- 4. Tanenbaum A.S., Langram Y, Augestien M.J., "Data Structures using C & C++", Prentice Hall of India, 2002
- 5. Aho, Hopcroft, Ullman, "Data Structures and Algorithms", Pearson Education, 2002.

COMPUTER COMMUNICATION NETWORKS MT 9313 LTPC 3 0 0 3

UNIT I INTRODUCTION:

Networking basics - LANs and WANs - Network hardware components, Server-based networks - Peer-to-peer networks - Server-based vs. peer-to-peer networks -Specialized servers - Combination networks - Network packets – Addressing packets – Multiplexing - Protocols - The OSI reference model – Internet Protocol Stack

UNIT II DATA LINK CONTROL:

Asynchronous and Synchronous transmission - MAC protocol; Controlled & contentionbased - IEEE 802.11 LANs - IEEE 802.11a,802.11g - System architecture, protocol architecture- physical layer, Media Access Control - MAC management - Data Transmission Module wrap-up LAN architecture - Error Detection and Correction Techniques – CRC and Linear Block Codes – Transmission Protocols – Retransmission techniques -Token ring – FDDI

(9)

(10)

(9)

(9)

(9)

UNIT III NETWORK PROTOCOLS:

IP Layers and functions - Congestion control - X.25 - Internetworking concepts and X.25 architectural models - Naming addressing and routing using IP - Unreliable connectionless delivery - Datagram's - Routing IP datagram's - ICMP.

UNIT IV **INTERNETWORKING:**

(9) LAN Addresses and ARP - Bridges, and Switches - Hubs - Routers - Brouters gateways and Repeaters - Choice for Implementation - File Transfer: FTP - Electronic Mail in the Internet - DNS - Socket Programming with UDP -Building a Simple Web Server

UNIT V **NETWORK MANAGEMENT:**

The dial-in end-user - the direct connection user - the Internet Service Provider the global Internet - emerging technologies over the Internet: IPv6 and ATM for a multimedia network - desktop conferencing and collaboration - mobile Internet - highquality audio - Push Technologies

L – 45 Total – 45

REFERENCES:

- 1. Fitzgerald and Dennis, "Business Data Communications and Networking", John Wiley and Sons, New Delhi, 2004
- 2. William Stallings, "Data and Computer Communications", Prentice Hall, New Delhi, 2005

MT 9314

COBOL PROGRAMMING

UNIT I INTRODUCTION

Structure of a COBOL Program- Coding Format for COBOL Programs- Character Set, COBOL words- Data Names and Identifiers- Literal, Figurative Constants- Continuation of lines and notations-divisions and its sections-IDENTIFICATION, ENVIRONMENT, DATA, PROCEDURE.

UNIT II **USING I/O FACILITIES**

Basic verbs- Conditional and sequential verbs- writing complete programs-Introduction-Sample program- program testing and style- Types of Clause- Elementary and Group Moves- CORRESPONDING Options.

IMPROVING THE PROGRAMS UNIT III

Table Handling- PERFORM - indexed Table and Indexing-SET Verb- SEARCH Verb-OCCURS DEPENDING Clause- Structured programming - Current Trends - Objectives methodologies-basic structures-combinations- Weakness of COBOL in Structured Programming.

(9)

(9)

(9)

LTPC 3104

(9)

(9)

UNIT IV **USING INTERFACES TO OTHER PRODUCTS**

Sequential Files-file description-fixed length records- variable length records-Statements for Sequential Files- I-O CONTROLS- Sorting and Merging.

UNIT V SPECIALIZED PROGRAMMING TASKS

Introduction to JCL, Statements, Format of Statements, Procedure and Symbols, COBOL using JCL.

L = 45 T = 15 Total = 60

REFERENCES:

- 1. Roy M.K., and Dastidar Ghosh D., COBOL Programming, Tata McGraw Hill.
- 2. E. Balagurusamy, COBOL Programming A Self Study Text, MACMILLAN 1999
- 3. "VS COBOL II Application Programming Language"
- 4. " z/OS V1R10.0 MVS JCL Reference", Thirteenth Edition, September 2008, IBM Corp
- 5. "z/OS V1R6.0-V1R10.0 MVS JCL User's Guide", Fifth Edition, September 2004, IBM Corp.

MT 9315 ADVANCED DATABASE TECHNOLOGY LTPC

3 1 0 4

UNIT I INTRODUCTION

Review of the formal relational data model - Database architecture, Components of database management system – DDL, DML. Database Security and Database recovery, Creating SQL Databases and Tables, Defining tables and views, Specifying integrity constraints, Selecting Data, Queries - stored procedures and functions - triggers and active databases

UNIT II DATABASE DESIGN ISSUES:

ER Model - Normalization - Security - Integrity - Consistency - Database Tuning --Optimization and Research Issues - Design of active databases - spatio-temporal databases - multi-media databases

UNIT III TRANSACTION PROCESSING:

Introduction – Properties of transaction – Serializability – Concurrency control – Locking mechanisms - two-phase comMMF protocol - dead locks - Database recovery

UNIT IV **DISTRIBUTED DATABASES:**

Architecture- Design considerations-Interoperability Query processing - semi-joins query optimization - Concurrency control - transactions and Heterogeneity issues schema translation and schema integration

9

9

(9)

(9)

9

9

UNIT V OBJECT ORIENTED DATABASES:

Object-oriented data models - Object Identity and its implementation – Supporting object modeling in database systems--Database programming and querying in object-oriented databases - ODMG standard, including ODL, OQL – Comparing RDBMS with OODBMS

L - 45 T - 15 Total - 60

REFERENCES:

- 1. Raghu Ramakrishnan, Johannes Gehrke, "Database Management Systems", Tata Mc- Graw Hill, New Delhi, 2004
- 2. Barry, Eaglestone and Mick, Ridley, "Object Databases: An Introduction", Tata Mc-Graw Hill, New Delhi., 1998.
- 3. Mario Piattini, Oscar Diaz, "Advanced database Technology and Design", Artech House Publishers, Massachusetts, 2000.
- 4. Ozsu M. T. & Valduriez P., "Principles of Distributed Database Systems". , Prentice Hall, New Delhi, 1999.

MT 9316 DATA STRUCTURES LAB L T P C

0 0 3 2

- 1. Implementation of List (Single, Double, Circular)
- 2. Implementation of Stack
- 3. Implementation of Queue.
- 4. Implementation of Searching Techniques (any Three)
- 5. Implementation of Sorting Techniques (any Three)
- 6. Implementation of Hash table
- 7. Implementation of Heaps
- 8. Implementation of AVL Rotations
- 9. Implementation of Prim's Algorithm.
- 10. Implementation of Breadth First Search Techniques.
- 11. Implementation of Depth First Search Techniques.
- 12. Implementation of Dijkstra's Algorithm.
- 13. Implementation of Kruskal's Algorithm.